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SUMMARY

Evolutionary algorithms mimic the process of natural evolution governed by the ‘survival of the �ttest’
principle. In this work, a genetic algorithm (GA) is successfully used to solve problems in potential
�ow in a gradual contraction, viscous �ow over a backward facing step, and non-Newtonian �ow using
the power law model. Speci�cally, the GA heuristically searches the domain for potential solutions,
precluding many convergence di�culties associated with the sti�ness of a problem. The GA was able
to solve problems that the gradient-based method could not mainly because of its relative indi�erence
to regions of high gradients when performing the search and that systems of discretized equations are
never actually solved. The GA exhibited excellent scalability properties for solving problems with a
large number of nodes. These results show evolutionary techniques to be of great utility in solving sti�
problems in �uid �ow. Copyright ? 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A computational �uid dynamics analysis starts with the choice=construction of mathemati-
cal models that describe the system of interest, (�ow model), followed by the selection of
the discretization method(s), and concludes with the solution of the resulting discretized
algebraic equations by an appropriate solution technique. Common CFD methods, by and
large, do succeed most of the time in arriving at ‘a solution’ to the modelled problem. The
e�ectiveness of current numerical techniques is perhaps overstated, due to the fact that failure
is rarely reported. In spite of that, it is well known that current solution techniques do face
occasional di�culties when dealing with particular types of systems. Turbulence modelling,
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reacting �ows, conjugate heat transfer problems, �uid power systems and viscoelastic �uid
�ow simulations are but a few examples where the partial di�erential equations combined
with the solution properties can lead to ‘sti�’ problems.
Sti�ness is one of the main causes of divergence in many numerical schemes. Sti�ness is a

phenomenon exhibited by the system=method combination and is not a well-de�ned property
of it. Here, it is loosely taken to mean that some components of the solution being sought
are unstable or change much faster than others. This is equivalent to the eigenvalues of the
Jacobian matrix of the system having two or more real parts that are large, positive and far
apart, in a way that no scaling technique can resolve the problem. These depend on the system
of equations and initial conditions, as well as the numerical method itself. It is known that
some problems face di�culties converging using one solution technique but not another. If the
issues of uniqueness, stability and consistency of a given discretization scheme are resolved,
then one can safely assume that any resulting set of sound discretized equations will yield
zero residuals (to within machine accuracy) if the correct solution is substituted in.
The main objective here is to apply genetic algorithms (GAs) to �ow problems which do

not converge easily or at all with conventional methods, such as the usual �nite di�erence
and �nite volume methods. The idea is to detect divergence of the numerical scheme, switch
to the evolutionary solver to get the solution, and go back to the main routine to carry on
with further iterations or perform postprocessing. The key assumptions made at the outset is
that the discretized equations of a particular numerical method ‘know’ the correct solution if
they happen to see it, i.e. the calculated residuals of the discretized will be equal to zero.
Furthermore, it is assumed that any appropriate norm of the residuals is a monotonic function
of the �tness of the solution.
An attractive feature of evolutionary algorithms is the stochastic nature of their search for

solutions. For common �uid dynamics problems, this means that the usual iterative procedure
for solving steady problems might not be necessary since in evolutionary algorithms no system
of equations is actually solved, and as a result, many of the stability and CFL conditions
associated with iterative solvers cease to be a major concern. Most importantly, however, is
that the search depends directly on the actual values of the unknowns and not on the gradients
of unknowns in the �ow �eld, a major cause of divergence for many CFD schemes.
The paper is organized as follows. Section 2 introduces GAs, their history as optimization

tools and their various operators, with particular emphasis on how this GA is customized to be
applied to �uid �ow problems. Section 3 gives the results of applying the GA to potential �ow
through a gradual contraction channel. Section 4 gives the results of using the GA to solve
problems of viscous �uid �ows obeying the steady, incompressible Navier–Stokes equations.
A brief overview of non-Newtonian �uids and the results of applying the GA to the �ow
of a power law non-Newtonian �uid are given in Section 5. Finally, Section 6 gives some
�nal conclusions on the application of evolutionary techniques to problems in CFD as well
as some suggested future directions for this work.

2. GENETIC ALGORITHMS

2.1. A brief overview
GAs are stochastic search and optimization techniques that mimic the evolution process of
biological organisms in nature which is governed by natural selection. The idea that biological
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evolution can be used as an optimization tool for problems in science and engineering was �rst
addressed by computer scientists in the 1950s and 1960s. In 1965 Rechenberg [1] introduced
the �rst evolution-based optimization tool. The method dealt with optimizing parameters for
devices such as airfoils through letting a population of candidate solutions evolve according
to rules inspired by biological systems to (hopefully) give the desired solution. In the 1960s,
Holland [2] began studying the phenomenon of adaptation in natural systems with the aim
of importing the mechanism into electronic computers. In general, the area of evolutionary
algorithms has three mainstream categories: evolutionary strategies, developed by Rechenberg
and Schwefel [3], genetic programming (GP), developed by Fogel [4, 5], and GAs, developed
by Holland. Holland’s GA loosely follows the Darwinian principle of natural selection best
described by the phrase ‘survival of the �ttest’. They stem from the notion of biological
evolution where organisms mate and natural selection guarantees the passage of individuals
with better qualities to the next generation.
The genetic operators crossover and mutation are the two main components of a GA

simulation. Chromosomes represent potential solutions of a given problem, and genes are the
parameters of the solution being sought. The crossover operator can be rede�ned more freely
as cutting and recombining chromosomes at any place(s) in the two (or more) parents. The
mutation operator is also rede�ned as changing one or more genes within the chromosome,
�ipped if binary genes are used, and perturbed if real-valued genes are used. GAs require a
few more basic components to function: a way to assess �tness, and a parent selection scheme.
An objective function is used to measure the �tness of chromosomes in each generation.
GAs have been used in many �elds of optimization. Like most other ‘meta-heuristic’ meth-

ods, such as simulated annealing and tabu search, they have been mainly applied to di�cult
combinatorial optimization problems, the likes of the travelling salesman problem [6]. They
were also applied to other areas of optimization like the design of radio antennas, �n pro�le
designs, inverse initial-value boundary-value problems, and even areas as diverse as fash-
ion design, and music composition [7–12]. Various problems in aerodynamics, ranging from
wing shape optimization to active noise control, have also been tackled using GAs [13]. By
and large, GAs have been used primarily for problems for which no established optimization
techniques existed. In recent years, GAs have been applied to an increasing number of engi-
neering problems in the areas of heat transfer and �uid mechanics, albeit not exactly as CFD
solvers or meta-solvers. They have been applied to basic heat transfer problems, multiphase
�ow functions estimation, and pipeline �ow optimization [14–16].
More recently, however, these evolutionary techniques have been applied to elementary �uid

�ow problems; Fan et al. [17] used a real-coded GA to solve a potential �ow problem for a
two-dimensional circular di�user cascade with 40 nodal points. Pryor [18] used a binary GA
to solve for a transient, 20-node 1-D �ow through a circular pipe. Both e�orts were greatly
constrained by the number of genes that could be optimized and the high computational cost
for the evolution, which put a limit on the size and complexity of the problems considered.
It has been reported that real-coded GAs outperform binary-coded ones in many types of

design problems. However, with the above di�culties, even real-coded GAs lead to premature
convergence (to local extrema) when applied to problems with a large number of design
variables. Further, the nature of appropriate genetic operators have not been truly investigated;
for a successful evolution the operators have to be designed in a way that takes into account
the nature of the solution encoding, the tolerances of the problem, and the properties of the
objective function used to evaluate the �tness. A minor added di�culty is the dependence of

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:321–354



324 R. I. BOURISLI AND D. A. KAMINSKI

an e�cient GA on the quality of the initial guess for the domain of the global extremum.
This limits the practicality of using a GA for meaningful engineering problems where the
number of variables is often large.
Bourisli and Kaminski [19] introduced a new strategy for applying GAs to larger-scale �uid

�ow problems. A uniform, successive-re�nement strategy was presented wherein the algorithm
starts with a coarse solution and works its way through multi-levels of re�nements to arbitrary
solution resolution. At each level of re�nement, a GA-window=sweep-through technique is
used to obtain incremental solutions for various parts of the �ow domain, thus reducing
the number of GA optimized variables in each generation. A �nite di�erence discretization
was used as the objective function. The encouraging results of that application of GAs to
potential �ow problems motivated the extension of the technique to other applications in
CFD with more involved �ow models and discretization methods [20]. This is combined with
the development of new genetic operators speci�cally designed to exploit the known nature
of unknown parameters.
We discuss below in detail the basic components of the algorithm, the various genetic

operators, and the general structure of the GA used in this study. We focus on new operators
designed speci�cally to enable the GA to deal with �uid �ow problems. The objective func-
tions are particular to the �ow problem considered and will be discussed in the respective
sections.

2.2. Population encoding

Real-coded GAs, as opposed to binary-coded ones, give greater freedom in choosing di�erent
crossover and mutation techniques as well as inventing new ones. In this study, real-coded
chromosomes are used in the form of matrices that correspond to possible solutions of the
�ow �eld variables. For example, the stream function  , the x- and y-direction velocities u
and v, and the pressure p are encoded on multiple 2D arrays corresponding to the number
of potential solution in the population; the 2D structure corresponds to the domain mesh. In
general, populations are initialized by �lling in the arrays of unknowns with pseudo-random
numbers in intervals bounded by expected minimum and maximum values. More on the
population initialization is said once numerical examples are discussed.

2.3. Selection scheme

Selection is the essence of the natural selection phenomenon on which the genetic evolution is
based. Armed with information about the �tness of the individuals in a population, a selection
scheme selects parents that will ‘mate’ and produce the next generation. Much research has
gone into developing schemes that preserve the good qualities of �t individuals while still
guaranteeing some presence of diversity possibly present in less �t individuals. A number of
schemes exist for selecting candidate chromosomes (parents) that will undergo the genetic
operators to produce the next generation (o�spring.) Among the most popular selection
schemes are the roulette wheel selection and rank selection schemes.
Roulette wheel selection is a stochastic sampling technique with replacement. Individuals are

selected for mating with probabilities directly proportional to their �tness. While roulette wheel
selection has zero bias, it has the disadvantage of not guaranteeing minimum spread (range
of possible values for the number of o�spring of an individual.) All selected parents could
end up being the same individual (unlimited spread.) To overcome some of the drawbacks of
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the plain roulette wheel selection, it is often combined with rank selection. In rank selection,
individuals are ranked according to their objective values, lowest to highest, and a new �tness
value is assigned to each individual depending on its position in the ranked list, often raised
to a rank power. Rank selection is quite appealing in that it naturally overcomes stagnation,
where the selective pressure (the probability of the best individual being selected compared
to the average probability of selection of all individuals) is low, and premature convergence
(when the search narrows down too quickly) is rare. Experiments have shown it to be superior
to roulette wheel selection, and some researchers have gone so far as to label it as the
best available selection scheme [21, 22]. Other popular selection schemes exist, such as, the
stochastic universal sampling and tournament selection schemes [23]. All numerical results
reported here, however, use a quadratic rank selection.

2.4. Crossover

Crossover is a close approximation to what happens biologically when the chromosomes of the
parents are crossed over, i.e. cut and recombined, to form the chromosome of an o�spring. In
real-coded chromosomes, one or more crossover points may be chosen at random and alleles
around them are exchanged between the parents.
The two-point crossover operator has been used widely in GA and has been claimed to

outperform the single-point one [24]. In computational �uid dynamics it is often the case
that potential solutions are cast in matrix form. Since we are at liberty in designing our own
crossover operator(s) and using more than one crossover point, a number of possibilities arise
as to how the o�spring will look. A number of crossover possibilities at the phenotypic level
are shown schematically in Figure 1. The optimum scheme might be problem-dependent and is
best decided with full consideration of the particular solution structure. The crossover scheme
of Figure 1(a) was determined to be a good choice because of the randomness it provides
and thus was used in virtually all results reported in this study.
The number of crossover points Nc was made to depend on the total number of alleles

Nnp in a parent chromosome. The length of the solution building blocks is assumed to stay
constant even if more re�ned solutions are considered. We suggest varying the number of
crossover points in the following manner:

Nc =

⌊√
Nnp
1:2

⌋
(1)

where � � is the greatest integer (or �oor) function. This increases the number of crossover
points with increasing chromosome length. The rationale for this slow increase is the expected
increase in the size of the building blocks of the solution with increasing resolution.
With regard to the nature of the crossover at the gene level (genotypic crossover,) two

types of crossover were used: the uniform crossover and the arithmetical crossover [23].
In a 0.5-uniform crossover, the �rst o�spring acquires the ith gene from the �rst parent
with probability 0.5, with the other o�spring getting the other parent’s gene. In the simple
arithmetical crossover, instead of the alleles after a crossover point being exchanged between
parents to form the o�spring, a fraction � of one is added to the complement of the fraction of
the other to form one o�spring allele, with the opposite fractions forming the other o�spring’s
allele. If the fraction � is set to 0.5, the resulting operator will simply average genes beyond
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Figure 1. Schematic representations of various crossover operators.

the crossover point. In the current application of this operator the fraction � is chosen randomly
from [0:2; 0:8] at each application.
In general, either of the two genotypic crossover operators can be applied independently

according to its own probability, with a maximum of one operator per crossover. In other
words, for each set of two parents, either uniform, arithmetical or no crossover is applied. For
example, suppose we chose to apply the uniform and arithmetical crossover operators with
probabilities 0.1 and 0.5, respectively. For the set of two parents, a random number s from
[0; 1] is generated; if s6 0:1, the uniform crossover is applied, if 0:1 ¡ s6 (0:1 + 0:5), the
arithmetical crossover is applied, and if s ¿ (0:1+0:5), no crossover takes place. In this case,
the total crossover probability is 0.6, with the uniform crossover applied 17% of the time and
the arithmetical crossover 83% of the time, within that 0.6 probability. This scheme provides
more randomness and adds to the versatility of crossover.

2.5. Mutation

Mutation is the mechanism through which diversity is maintained in a population. By ran-
domly changing values of alleles in a chromosome it also acts as the main safeguard against
premature convergence. For real-coded GAs, however, mutation is often the main driving
force in the population evolution, as reported by many researchers [19, 25, 26]. There are
numerous possible mutation operators, such as creep mutation [27], coarse- and �ne-grained
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mutation [28], etc. In this study, four di�erent mutation schemes are used and a probability
of application is assigned to each; we discuss all four of them below.

2.5.1. Non-uniform mutation. A widely used mutation method for real-valued chromosomes
is the non-uniform mutation [23, 29] which takes into account known limits on the value of
a parameter. Given that a particular allele xi can only assume values between an upper and a
lower bound, xU and xL, then if the allele is mutated with probability Pu

m, the newly mutated
allele is

x′
i =

⎧⎨
⎩

xi + (xU − xi)(1− s(1−g=gmax)�

1 ) if s26 0:5

xi + (xL − xi)(1− s(1−g=gmax)�

1 ) if s2 ¿ 0:5
(2)

where s1 and s2 are uniformly distributed random numbers from [0, 1], g is the generation
number, gmax is the maximal number of generations for the run, and � is a mutation parameter
(a real number of order 10). This formula provides for aggressive exploration early in the
evolution and concentrated exploitation in latter stages. But due to the nature of the conver-
gence criteria, the maximum number of generations is not known in advance. More impor-
tantly, specifying meaningful upper and lower bounds on variables can be tricky, especially
if the range must be narrow so that the operator is e�ective.

2.5.2. Fitness-guided mutation. This mutation operator is a slightly modi�ed version of the
non-uniform mutation discussed above but without many of its limitations. One possible way
to overcome the limitation of having to specify meaningful lower and upper bounds on the
value of the optimized variable is to use information calculated in the �tness evaluation phase.
A linear transformation of a residual norm r from the calculated objective function is used
as a random, yet targeted, perturbation of the alleles to be mutated. We call this scheme the
�tness-guided mutation. To use the �tness information in the mutation operator, the general
proposed formula is

x′
i =

⎧⎨
⎩

xi(1 + rs(1−f)
1 ) if s26 0:5

xi(1− rs(1−f)
1 ) if s2 ¿ 0:5

(3)

where r is �tness information represented by a measure of the residual at the current node,
f is the �tness of the �ttest individual, and s1 and s2 are random numbers from [0, 1]. By
using the �tness information, this mutation formula eliminates the need to specify bounds
on the variable values. Furthermore, substituting the �tness of the �ttest individual for the
g=gmax ratio eliminates the need to set a priori limits on the number of generation the
algorithm performs: when the �ttest individual has a �tness close to 1 the GA is consid-
ered close to complete. More on the nature of the residuals and the �tness function is said
once the objective functions of the di�erent problems are discussed.

2.5.3. Random average mutation. A third mutation scheme proposed here is the random
average mutation scheme, where the mutated allele is taken to be an average of a randomly
selected set of four neighbouring nodes. One set consists of the south, east, north and west
nodes, while the other set consists of the southwest, southeast, northeast and northwest nodes.
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Figure 2. The four equally probable sets of nodes for the random average mutation operator.

The two equally possible sets of neighbouring nodes are shown in Figure 2. Obviously, this
mutation scheme can only be applied to nodes that are interior to the �ow domain since nodes
on the boundaries do not have valid neighbours in all four directions.

2.5.4. Block mutation. Very rarely, the values of the variables optimized do not need random
mutation that is applied selectively to random genes but a very small shift in the magnitude
of the whole �eld (or GA window, as discussed below.) The fourth type of mutation is one
where the values of all alleles are increased or decreased by a very small amount. If the �eld
is slightly ‘out of phase’ with the optimum solution then this small change will bene�t it
directly. If, however, the �eld is not that uniformly out of phase, which is more likely, then
this minute block change of the �eld will serve other chromosomes when the next crossover
takes place. We call this new mutation operator the block mutation. This operator is most
e�ective when large �ow �elds are combined with small GA windows; its probability should
be at least one order of magnitude smaller than the probabilities of the three previous operators
so that it will not interfere with the main search.

2.6. Elitism

To improve the process further, the elitist strategy is used: clones of a portion of the pop-
ulation, usually a clone of only the �ttest individual in the generation, survives the genetic
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operators and is automatically reinserted in the next generation, right before the next selection
process takes place. This guarantees that a good solution is not lost by being crossed over or
mutated away, resulting in o�spring that are inferior to it, or, worse, not being selected for
reproduction at all.
As a way of reducing the elitist reinsertion computational time, only two chromosomes are

picked randomly, their �tness measured, and the elitist is reinstated in place of the inferior.
This precludes the accidental writing of the elitist on top of a randomly selected better chro-
mosome while still saves the time required to calculate the �tness of the whole population and
replacing the overall worst chromosome. The elitist strategy has been used in all numerical
results reported in this study.

2.7. Re�nement

As alluded to previously, GAs can face di�culties when applied to problems where the number
of optimized variables is very high, therefore it is unwise to tackle complex simulations with
thousands and thousands of nodes directly, such as those found in �uid dynamics. Solving
a �uid �ow problem with even a few thousand nodes is quite challenging for a simple GA.
Moreover, one hallmark of GA is its sensitivity to the initial guess; the quality and diversity
of genes of the initial population do a�ect the time it takes the GA to converge, and whether
it converges to a local or global extremum. This is a critical tradeo�: the algorithm search
space consists of a large space of real numbers, so the smaller the region the GA is exposed
to, the faster it can zero in on its extremum. On the other hand, if enough diversity is present
in the population, the chances for the GA to converge to the absolute extremum are greatly
enhanced.
To overcome these di�culties a multilevel re�nement process that takes the solution from

a small scale involving a handful of nodes to the desired level of re�nement can be used.
The process is similar to successive grid sequencing. The solution starts with a coarse grid
of the �ow domain, with enough nodes to describe the large-scale features of the �ow �eld.
Once the GA converges to an acceptable solution for this level, the re�nement takes place
by placing one or more nodes between existing ones, interpolating for new nodal values, and
proceeding with the next GA re�nement runs.

2.8. GA windows

Another technique proposed to dramatically reduce the number of optimized variables at a
time is the GA windows sweep-through technique. One or more lines of nodes extending
across the full width of the �ow�eld, perpendicular to the primary �ow direction, is cho-
sen as a subdomain for the GA solution. This GA window of nodes is solved, then moved
downstream. The window width can be anywhere between one line to the whole domain (in
which case its e�ect disappears.) The window must move across the whole domain, cover-
ing all interior nodes; this constitutes a GA sweep. Nodes not being optimized inside the
window are held �xed, where an essential boundary condition is temporarily enforced for all
unknowns. A schematic of the GA-windows used in the potential �ow problem is shown in
Figure 3.
In the potential �ow problem, one-line GA windows were found to be most e�ective and

were used to produce the results reported. We note that whenever large recirculation zones
are expected, such as in Sections 4 and 5, these windows can take any suitable shape to
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Figure 3. Flow through a contracting channel and an example of a single whole line GA window.

account for the �ow behaviour, such as rectangular patches, for example. Results of Sections
4 and 5 were produced using a single GA window, thereby eliminating its e�ect. While this
choice is not optimum, it provided consistent results for all �ows involving recirculation and
more than one unknown. Further research should go into optimizing the size, shape and path
of these GA windows.
If the GA does not come adequately close to the preset �tness criterion, additional GA

sweeps can be done for a single level of re�nement. A second sweep of the GA over nodes
already optimized can only improve the solution since the nodes on the GA window boundary
will be more accurate having been optimized in the previous sweep-through.

2.9. Population shu�ing

To guard against premature convergence and the occasional stagnation of the algorithm, a
population shu�ing mechanism is added. It can be activated at predetermined sweeps, e.g. at
every ith sweep, or whenever no progress is detected from the previous sweep to the current.
The shu�e operator takes the elitist and adds a fraction of the �tness information used in the
�tness-guided mutation to all alleles, copying the newly formed chromosomes in place of older
ones. In general, it was found that shu�ing between 20 and 30% of the population every
4–5 GA sweeps raises the average �tness—enhancing the GA performance—and prevents
premature convergence in many runs.

2.10. Gradient search and smoothing

There has been a noticeable move recently toward hybrid schemes that alternatively use
both evolutionary and gradient search methods in a way that greatly improves the speed and
precision of the search [30, 31]. In this algorithm, a gradient search is occasionally stepped
into to �nd a niche that would concentrate the GA search and=or give new directions. The
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search is usually applied every so often to a small fraction of the population and with what
represents very small relaxation factors.
While the following minor addition to this GA is not quite a true hybridization of the

algorithm, it was found that the �nal result of the GA can bene�t from a little smoothing,
mainly to smooth out rough edges in the �elds and enhance the output �gures. At the end
of each re�nement level the chromosomes are passed to a gradient search routine, e.g. the
SIMPLER �nite volume routine, with relaxation factors of 0.05 or less which are just enough
to smooth out the variable �elds while not disturbing the quality of the solution.
This operator can also be applied occasionally during the evolutionary search to perform a

task that is the opposite of what the previous (shu�e) operator does. It was noticed that the
delayed alternating application of these two operators greatly enhances the GA. A possible
delayed alternating application may consist of applying the former operator at the third sweep,
the latter operator at the sixth sweep, the former again at the ninth sweep, and so on.

2.11. Convergence criteria

As in most numerical simulations, a GA output ‘solution’ is de�ned as the best solution at
the time of the voluntary stoppage of the simulation. For this GA, there are two levels of
convergence: the convergence of the individual GA windows, and the convergence of the
overall GA re�nement level. For the former, instead of following the usual GA strategy of
specifying a priori the number of generations until the algorithm is stopped, the GA is let
to evolve until (i) the normalized �tness of the elitist reaches the maximum value of 1, or,
(ii) the �ttest individual does not improve for a certain number of GA window generations,
e.g. on the order of 10 generations.
For any level of re�nement, the greater sweeping-through process is stopped when the �t-

ness does not change for a given number of GA sweeps (around 20,) or, preferably, when the
maximum residual of the elitist reaches the preset limit. When this happens, the GA moves
to the next re�nement level, if any remain. On the last level of re�nement, the algorithm was
considered successful only when the maximum residual of the elitist was less than this preset
limit. For most calculations, the preset convergence limit was set to 1:5× 10−3; this usu-
ally corresponds to about one hundredth of one percent of the value of the average property
value.

2.12. The GA in pseudo-code

Program 2.1 is a simpli�ed version of the pseudo-code that represents the GA described above
and used in this work. The code operates on �ve levels; from inside out, they are: the local
GA, GA windows, optimized variables, global sweeps and global re�nements. In the next
three sections the algorithm is tested using three di�erent problems in �uid �ow. The GA
secondary capability to work a �uid �ow problem from start to �nish is demonstrated in the
�rst example, while the main intended function of the GA to serve as an auxiliary solver when
common techniques face di�culties is demonstrated in the second and third examples. The
various objective functions used to measure the relative �tness of the individuals are discussed
in detail. The interface known as the �tness function between the objective function and the
GA is also discussed. All reported computations were performed on a 2:0 GHz Pentium 4
platform with 512 MB of RAM.
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Program 2.1
The main genetic algorithm
read parameters and initialize populations
for re�nement =1 to maximum re�nement do
calculate global �tness
repeat {global sweep generations}
for variable = 1 to number of optimized variables do
loop {over GA windows}
calculate the GA window �tness
repeat {local GA window generations}
select parents
crossover
mutate
reinstate elitist if option selected
calculate GA window �tness

until GA window convergence condition is met
end loop

end for
calculate global �tness
shu�e population if applicable
gradient search if applicable

until global converge condition is met
re�ne mesh and interpolate

end for
smooth solution
write results

3. GA FOR POTENTIAL FLOW THROUGH A GRADUAL CONTRACTION

3.1. Model problem and governing equations

As a �rst test of the GA, it is applied to the problem of a gradually contracting channel
�ow. The �ow modelled is an incompressible, steady �ow through a 2 − 1, 45◦ gradual
contraction channel, as depicted in Figure 3. For a number of �ow situations, such as creeping
Stokes �ow and some non-Newtonian �ows, recirculation zones are negligibly small or non-
existent. These �ows can be e�ectively modelled using the irrotational potential �ow model.
The stream function that describes the �ow satis�es Laplace’s equation,

∇2 = 0 (4)

3.2. Objective function

The general features of the GA follow those described in Section 2 with regards to encoding,
operators, convergence criteria, etc. The �tness calculation part is arguably the main part of
any GA and this will be described in this and the next subsections. The �tness part of a GA
determines the relative �tness of the chromosomes so that the selection scheme has the proper
information to select parents for the next generation. It is noted about the terminology that
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the �tness function is sometimes called the objective function, but it is the objective function
that actually di�erentiates between chromosomes and it is the job of the �tness function to
assign �tness values according to this di�erentiation.
For the objective function any valid method to di�erentiate between the ‘goodness’ of

chromosomes as potential solutions can be used; �nite di�erence-based residuals are used
here. To obtain this the 2D domain is meshed with a uniformly-spaced Cartesian grid, and
Equation (4) is discretized using second-order central di�erences,

@2 
@x2

≈  i+1; j − 2 i; j +  i−1; j
�x2

(5a)

@2 
@y2

≈  i; j+1 − 2 i; j +  i; j−1
�y2

(5b)

Substituting these approximations into (4) and simplifying, we arrive at the nodal equation
for the stream function at node (i; j),

 i; j= 1
4( i+1; j +  i−1; j +  i; j+1 +  i; j−1) (6)

giving the residual r at an interior node (i; j) as

ri; j=
∣∣ 1
4 ( i+1; j +  i−1; j +  i; j+1 +  i; j−1)−  i; j

∣∣ (7)

3.3. Fitness function
There are several ways in which the �tness can be de�ned. The actual �tness of a chromosome
can be calculated as the inverse of the maximum residual rm, de�ned as

rm= max
16i6Nx
16j6Ny

ri; j (8)

where Nx and Ny are the maximum number of nodes in the x- and y-directions, respectively.
The inverse de�nition of the �tness function will give low �tness values for high residuals and
very high ones for close to zero residuals. There are many advantages, however, to having the
�tness values bounded in a known interval, for example, to compare solution quality across
GA variables, parameters, geometries, re�nements and runs. One way to accomplish this is to
de�ne the �tness as the exponential of the maximum residual among all interior nodes, which
bounds the �tness to be in the interval [0,1]. In addition to the maximum residual rm, which
is the maximum residual among all nodes, two other �tness criteria can be used: a global
residual rg, which is the normalized sum of residuals of all optimized nodal points Nnp, and a
boundary residual rb, which is the normalized sum of residuals of only exit boundary nodes
Nb. These are de�ned as

rg =
1

Nnp

∑
16i6Nx
16j6Ny

ri; j (9)

rb =
1
Nb

∑
16i6Nx
16j6Ny

{ri; j|(i; j) ∈ Nb} (10)

Whereas rm is a measure of the worst point in the solution, the global residual rg represents
the collective quality of the solution and the boundary residual rb emphasizes the adherence
of the �ow to a zero longitudinal gradient at exit.
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Incorporation of these additional indicators gives a useful balance that guards against un-
derestimating a good solution that has relatively high residuals at a couple of nodes but
near-zero residuals elsewhere, and against overestimating an average solution that has moder-
ate residuals nearly everywhere. The boundary residual speci�cally measures the residuals of
nodes at the exit, representing the quality of the exiting �ow and whether it is parallel to the
channel or not. The boundary residual factor is activated only when a GA-window boundary
(cf. Section 2.8) coincides with global exit boundary nodes. Therefore, the �tness function
can be written as

f=
(wme−rm + wge−rg + wbe−rb)

wm + wg + wb
(11)

where wm, wg and wb are weights to control the emphasis placed on the three components
of the �tness function; values wm =wg =wb = 1 were found to be adequate and were used
throughout the calculations presented in this section. For all weighting combinations possible,
the �tness should approach the maximum value of 1 as the residuals tend to 0.

3.4. Numerical results and discussion

The GA was run with population sizes 2, 4, 6, 10, 18, and 40. The population is initialized by
�lling in the matrix of the unknown stream function values with random numbers bounded
by the lowest and the highest streamline values. Results reported here were made with a
population size of 18 and crossover and mutation probabilities of 0.9. The �tness value for
the �ttest individual and the average �tness of the generation are plotted in Figure 4 against
the GA sweeps performed. A comparable plot of the corresponding maximum and global
residuals of the �ttest individual is shown in Figure 5. It can be seen that the �tness goes
from about 0.5 to near unity as the residuals drop four orders of magnitude to the preset
convergence limit. At the beginning of each re�nement level, we note a small dip in �tness;
this is due to the interpolations needed to go from coarse solutions to the �ner grids—the
current level of grid sequencing.
As mentioned previously, one of the main motivations for using a GA for �uid mechanics

problems was its apparent insensitivity to the sti�ness many problems exhibit. An appropriate
measure of this property might be the values of the residuals throughout the domain after a
converged solution is reached. Inspection of the residual magnitudes of the converged solu-
tion reveals that in any region of the �ow �eld the residual magnitudes are within 30% of
each other. Speci�cally, the heuristic search exhibited the same level of ease (or di�culty)
optimizing regions of uniform �ow, such as the middle of the channel, as it did optimizing
regions near the contracting walls. In addition, the magnitudes are more or less comparable
over much of the domain–smaller residuals exist in the narrow section where solid boundaries
are closer together on average and nodes are better optimized. This result shows that the GA
was rather indi�erent to the locations and magnitudes of gradients, a main cause of divergence
in gradient-based numerical methods.
Barring complete elimination of diversity, a GA is expected, given enough time, to converge

to the global maximum �tness. With smart introduction of new blood via mutation, random
walk theory guarantees the long-term convergence to the desired solution quality. Therefore,
a practical measure of the success of a GA simulation can be taken to be the time it takes
to converge. For some combinations of population sizes and probabilities of mutation the GA
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Figure 4. Fitness of the best chromosome.

Figure 5. Maximum and global residuals.
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did not converge, i.e. the maximum residual of the elitist did not fall below the convergence
limit, and, no changes were noticed in �tness after more than about 20 GA sweeps. For the
combinations that converged in less than 60 min, Figure 6 shows times to convergence versus
the mutation rate for a number of population sizes.
It can be seen from Figure 6 that the best GA performance was for small to medium

population sizes and high mutation probabilities in general. It is noticed that very large and
very small population sizes were consistently outperformed by the moderate one. The reason
is that for large populations much time goes into unneeded operations on chromosomes after
the best possible result has already been determined. Conversely, for very small populations,
not enough building blocks of the sought-after solution are present in the population. For these
populations, low mutation rates were not adequate to consistently probe=scrutinize the global
extremum region, resulting in the algorithm ‘giving up’ on the search. This is clearly evident
in mutation rates below 0.3 for population size 4. It should be noted that for the extremely low
population size of 2, the GA did not converge for any mutation rate; a population size 2 is
best negotiated using evolution strategies, a close cousin to GAs designed to operate using one
parent and one o�spring. In general, for the current problem complexity, a pseudo-optimum
mutation rate of around 0.7 can be deduced from the plot.
One of the notable di�erences between a regular GA and the re�nement=line-by-line GA

implemented here is the very large number of generations that can be simulated; a typical
GA run performs between 500 and 1000 generations, whereas because of the greatly reduced
number of variables optimized at a time, our GA performed on the order of 1 million total
generations.

Figure 6. Time of convergence (minutes) vs probability of mutation.
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Another major observation on the optimization of one variable only is that for real-coded
chromosomes the crossover operator had very little e�ect on the convergence of the GA. For
smaller populations (10 or fewer chromosomes), the crossover e�ect was practically negligible
and mutation was the only mechanism through which the GA progresses. This is important
since it was noticed that smaller population sizes performed better, i.e. converged solutions
took less time to emerge. These �ndings con�rm previous observations made by many re-
searchers [19, 25, 26].
An instructive plot to look at is one that shows relative time spent by the GA on each

of its main operators. Figure 7 shows that the bulk of the time is spent on mutation. This
is warranted because mutation is the primary driver for convergence. Crossover also takes a
substantial portion of the calculation time, and unless selection information is supplied directly
to the mutation operator, stepping through the crossover routine will continue to be important
because of its incorporation of the selection information, regardless of the e�ectiveness of the
crossover process itself. For more elaborate �tness calculation schemes the �tness portion of
the calculation time can increase signi�cantly, (cf. Figure 21.) Figure 7 is a good place to
start when increased e�ciency of the GA is desired.
The uniform successive re�nements combined with the moving GA-window strategy were

proven e�ective in reducing the number of optimized quantities per generation, allowing for
a considerable enhancement in performance in the larger sweeps. These results show that
small to moderate population sizes combined with high mutation rates were most e�ective.
Convergent solutions for a 65 000 node mesh were obtained in many cases in under 5 min.
Previously reported work on GAs applied to �uid �ow was limited to simple �ows dealing
with much smaller meshes [17, 32].
It is noted that this potential �ow problem can be e�ectively solved using other numerical

methods perhaps in less time than the GA required. The evolutionary solver is intended to be
used primarily as an auxiliary solver that is activated when common methods of solution run
into di�culties. Findings made for this simple problem are extended to areas of highly sti�

Figure 7. Percentages of calculation time for each GA component.
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problems where conventional techniques su�er from divergence or slow convergence. These
problems include a number of viscous �ow simulations and many non-Newtonian polymeric
liquid �ows often encountered in industry; they are addressed in Section 5.
But next, we focus on the general way this evolution program is used to solve problems

of viscous �uid �ows with considerable recirculation zones. In practical �ow problems, the
e�ects of viscosity are always important and must be included in the analysis. As viscosity
is added, recirculation patterns arise, presenting a new challenge to the GA; this will be
addressed in the next section.

4. GA FOR VISCOUS FLUID FLOW

4.1. Model problem and governing equations

The �ow modelled is assumed to be laminar and isothermal, obeying the steady, incompress-
ible, Newtonian Navier–Stokes equations. The dimensional mass and momentum conservation
equations in primitive forms are

@u
@x
+

@v
@y
=0 (continuity) (12)

u
@u
@x
+ v

@u
@y
=−1

�
@p
@x
+ �

[
@2u
@x2

+
@2u
@y2

]
(x-momentum) (13)

u
@v
@x
+ v

@v
@y
=−1

�
@p
@y
+ �

[
@2v
@x2

+
@2v
@y2

]
(y-momentum) (14)

One di�culty in solving the incompressible Navier–Stokes equations iteratively is the
unknown pressure �eld. The pressure is indirectly speci�ed via the continuity equation in
that the correct pressure �eld ensures a divergence free continuity equation. To overcome this
complication, in many CFD implementations the Poisson equation for pressure is substituted
for the continuity equation. Another di�culty is that when the pressure gradient terms in the
momentum equations are discretized using pressure di�erences the problem of the zigzagged
pressure �eld arises. A common remedy for that is the use of staggered grids to calculate
velocities. Both these modi�cations are implemented in the �nite volume discretization below.

4.2. The discretized equations

The governing equations are discretized using the �nite volume method. The calculation
domain is subdivided into a number of non-overlapping control volumes over which the
equations are integrated, resulting in a set of discretized equations in terms of the values of
known and unknown quantities at grid points. The main grid points, located in the middle of
the control volumes, are used for the pressure equation. The u and v velocities are calculated
on meshes that are staggered in the x- and y-directions, respectively. Figure 8 shows part
of the domain and a sample non-staggered grid is show in Figure 9. The discretized x- and
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Figure 8. Staggered �nite volume mesh.

Figure 9. Sample control volume.

y-momentum equations are

apup = asus + aeue + anun + awuw + Ap(pW − pP)

=�anbunb + Ap(pW − pP) (15)

apvp = asvs + aeve + anvn + awvw + Ap(pS − pP)

=�anbvnb + Ap(pS − pP) (16)

and the equation for obtaining the pressure �eld is the Poisson’s equation de�ned on the main
grid,

aPpP= aSpS + aEpE + aNpN + aWpW + b (17)
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The coe�cients a’s, and b, and the areas Ap are de�ned in Reference [20], and the basic
derivation of the discretized equations is given in Reference [33].

4.3. Objective and �tness functions

As in the last section the objective function is de�ned to be the residual of these discretized
equations, only this time we have three di�erent equations that could be used to optimize
three di�erent variables. Three residuals, rp, ru and rv, corresponding to the three equations
above are de�ned as

rp= | − aPpP + aSpS + aEpE + aNpN + aWpW + b| (18a)

ru= | − apup +�anbunb + Ap(pW − pP)| (18b)

rv= | − apvp +�anbvnb + Ap(pS − pP)| (18c)

The �tness function de�nition of the last section is used again here. There are a number of
options for the variable(s) the GA can attempt to optimize in each sweep. The algorithm can
solve the u velocity by itself, the v velocity by itself, pressure by itself, only velocities, or
all variables simultaneously. The three residuals rp, ru and rv are considered if p, u or v are
being optimized, respectively. When more than one variable is being optimized, the maximum
residual of all equations involved is considered the residual at that node, viz.,

r= max(rp; ru; rv) (19)

The maximum, global and boundary residuals rm, rg and rb, are de�ned in a similar fashion
to Section 3.3, i.e. Equations (8)–(10). The �tness function is also de�ned as

f=
wme−rm + wge−rg + wbe−rb

(wm + wg + wb)
(20)

Results reported in this and the next section were obtained using simultaneous optimization
of all three variables in a GA sweep.

4.4. Numerical results and discussion

The geometry of this problem is that of a 2-D channel containing a 2-1 expansion over a
backward facing step with one inlet and one exit. The �ow has a Reynolds number of 200.
The mesh contains 3721 uniformly placed main grid points. A channel height H =3:6m and
a step height of H=2=1:6 m were used. The �uid density �=0:1 m3=kg and the dynamic
viscosity �=1:794× 10−3 kg=m s were assumed constant. The inlet velocity pro�le is that of
a fully developed channel �ow and an exit more than 5H downstream was enough to recover
a fully developed exit �ow pro�le.
The �ow entering the channel is assumed to be fully developed. For an initial guess for the

GA a few iterations of a conventional gradient-based scheme are performed to get an initial
picture of the signs and magnitudes of the various velocities and pressure in the �eld since it
would take the GA a long time to weed out non-physical solutions and �gure out the general
features of the �elds. It is stressed that this is the intended way the GA will be used; in other
words, the GA will only be used when gradient-based schemes stagnate or diverge.
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Table I. GA parameters for the Newtonian backward facing step.

Nodes Popsize Pa
c Pu

c Pr
m Pu

m Pa
m Pb

m shu�e
3721 20 0.2 0.2 0.2 0.01 0.001 0.001 20% every 4th

Figure 10. Progress of the elitist �tness and the maximum residual after each GA sweep.

To provide the necessary initial guess, and also to serve as a means of comparison and
validation, the SIMPLER �nite volume-based algorithm was used [33]. For this problem, the
GA uses an initial guess obtained from running the SIMPLER algorithm for 30 iterations. (For
the described problem the SIMPLER solution starts to be mass-conserving and begins to show
physically possible features at the 27th iteration.) To simulate an even worse starting point,
this SIMPLER output (velocities and pressure) is perturbed by 50% uniformly distributed
random error and used to initialize the GA population.
The crossover operator is reinstated for this relatively more complex �ow. The total proba-

bility that the chromosome is operated upon by a genetic operator (crossover and=or mutation)
is kept at the same levels as the potential �ow problems only with a redistribution of the
operators probabilities, cf. Section 3.4. Additionally, because of the presence of three interde-
pendent variables (u, v, and p) instead of one for the stream function, the previously deduced
optimum population size was tripled. Crude parametric tests con�rmed the appropriateness of
these scalings. The parameters used to run the GA are listed in Table I.
A plot of the progress of the GA, represented by the history of the elitist �tness and

the maximum residual, is shown in Figure 10. The evolution starts with a �tness of 0.78,
which corresponds to a residual of about 0.016, and increases to well above 0.97. We note
how the �tness of the elitist rises steadily as the maximum residual drops to around the
preset convergence limit of 1:5× 10−3. The total GA sweeps performed were 81 and the
total corrected number of generations (taking into account generations at the GA window
level and generations of the optimized variables) was around 800. The GA ran for a total of
approximately 17.6 minutes.
Contours of the velocity magnitude and pressure for the converged GA solution are shown

in Figures 11 and 12, respectively. Scaled velocity vectors are also superimposed on these
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Figure 11. GA velocity magnitude contours with superimposed velocity vectors for a Newtonian
�ow over a backward facing step.

Figure 12. GA pressure contours with superimposed velocity vectors for a Newtonian �ow
over a backward facing step.

�gures. Judging by these �gures and the residual magnitudes, it can clearly be seen that the
GA successfully arrived at a physically correct solution.
To assess the ‘degree of convergence’ of the GA we compare it with the fully converged

solution obtain independently by SIMPLER. Choosing the u velocity as the comparison vari-
able, we measure the di�erence in the nodal value of the velocity at each grid point and �nd
out that the GA solution is converged to within 1:4% of the SIMPLER solution. Degrees of
convergence of the other solution variables are expected to be of similar or lesser magnitudes.
Whether the converged solution supplied by SIMPLER is to be taken as an absolute correct

solution is a point to be pondered. The SIMPLER solution for this Newtonian backward
facing step problem was compared to benchmark published solutions and has shown very good
overall agreement [34]. However, one thing we note about SIMPLER is that it is �rst order
in its representations of gradients, just like the objective function used here. This somewhat
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degrades the output solution when compared with higher order discretization. Additionally,
because of the presence of circulation zones where the �ow is oblique to the mesh lines,
there is the issue of false di�usion, addressed in Reference [33] with regards to SIMPLER
and more generally in Reference [35], and to which SIMPLER has no remedy.
Last but not least, we look at the question of SIMPLER’s accuracy in regions of large

gradients. This is the main area where we expect the GA to outperform, on a local level,
gradient-based methods like the SIMPLER algorithm. In particular, it is interesting to �nd out
whether a solution can be improved beyond the converged solution determined by SIMPLER
(judged by the residuals magnitudes of the governing equations.) As a sample test problem,
we consider a SIMPLER solution of the same backward facing step problem taken to full
convergence, i.e. a pressure correction magnitude of around machine accuracy (10−14). For
this solution, the residuals of the three governing equations are calculated using the objective
function described and are plotted in Figure 13. We note that the residuals near the tip of the
step are clearly the highest.
Next, we turn to the GA and run it using this solution as an initial guess and check whether

it is able to further reduce the maximum residual, despite the inability of SIMPLER to do
so. The progress of the elitist �tness and maximum residual is shown in Figure 14 where we
notice that the GA was indeed able to reduce the maximum residual considerably. The GA
is able to get around di�culties associated with large gradients near the tip of the step and
optimize those nodes in a way SIMPLER was not capable of, even though the two algorithms
used virtually the same �nite volume discretization method and governing equations. The only
di�erence is that the GA calculated the absolute residuals of the equations and used them to
measure �tness. More is said about this quality of the GA in Section 5.4.

Figure 13. Residual map of the �ow domain as given by a converged SIMPLER solution for the
backward facing step problem.
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Figure 14. Progress of the elitist �tness and the maximum residual at each GA sweep starting from a
fully converged SIMPLER solution.

4.5. Convergence rate

An important question regarding any numerical method is the rate of convergence it exhibits.
The treatment of this issue is paramount for new methods intended to solve problems from
start to �nish, but is also important to address for auxiliary solvers intended to be activated
when basic methods fail—such as the evolutionary solver at hand. A survey of the literature on
evolutionary algorithms quickly shows the clear lagging of theory behind practice in this �eld.
This lagging is most evident when one considers the scarcity of theoretical treatment of almost
all evolutionary algorithms when it comes to studying the convergence characteristics (in the
CFD sense) of GAs as a whole [36]. Some researchers have studied convergence models of
various genetic operators, such as selection and mutation schemes, while others studied the
local convergence using �nite Markov Chains [37], which is limited in its scope.§ Somewhat
better treatment of the theory exists for evolution strategies (ES) [38], and much e�ort is
being devoted lately toward the ever-growing area of multiobjective evolutionary algorithms
[39].
With these limitations, we are forced to de�ne our own convergence rate for this highly cus-

tomized GA. We can call it, perhaps more appropriately, computational complexity
(or scalability), and think of it as the relationship between computation time and the problem
size, which is directly related to the number of optimized nodes. As a test case, the GA
tackles the simple �ow between two in�nitely long parallel plates. The inlet boundary has the
fully developed velocity pro�le. The problem was run using �ve di�erent grids sizes: 21× 21,
31× 31, 41× 41, 51× 51 and 61× 61. One GA window was used through all these runs in

§The �nite Markov states are used to represent the GA generations, but they assume in�nite populations, which is
at odds with practice. Furthermore, they are limited to canonical GAs (GAs with no elitism) which are provably
non-convergent to the global optimum.
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Table II. GA Parameters for straight channels.

Popsize Pa
c Pu

c Pr
m Pu

m Pa
m Pb

m shu�e

30 0.3 0.1 0.01 0.01 0.001 0.001 20% every 4th

Figure 15. The GA rate of convergence for the straight channel.

order to be consistent across all runs, and make convergence time=generation solely dependent
on the number of optimized nodes.
The GA is asked to start with random, yet realistic, guesses of the velocity and pressure

�elds and is expected to arrive at the fully developed velocity pro�les with a consistent
pressure drop. For this straight channel �ow we expect the normal velocity to be small, thus
the v velocities are initialized randomly from a uniform distribution between ±0:15. We also
expect the u velocities not to exceed the maximum inlet (non-dimensional) velocity Umax =1:5,
and therefore the u’s are initialized randomly from the interval [0; 2]-nodes closer to the walls
have a higher probability of being assigned a lower value. In all cases the GA converged to
the correct solution with the preset convergence limit. Relevant GA parameters are shown in
Table II.
Figure 15 shows a plot of the computation time and the number of generation until conver-

gence as functions of the problem size, taken from the GA solutions to the straight channel
problem above. The relationship between the computation time and the number of nodes in
the domain for this GA appears to be linear. The number of generations does not seem to be
dependent on the problem size, which of course implies that for larger problems a generation
(GA sweep) takes a longer time to meet its local convergence criterion.
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4.6. Closing remarks

The problem of an incompressible �ow over a backward facing step was treated in this
section. It was shown that the GA is able to successfully arrive at a solution starting from
a not-so-good initial guess using the various genetic operators and diversi�cation techniques.
The GA was even able to improve a solution past the point when the �nite volume technique
stopped completely. This problem, however, is still not considered a formidable problem for
most gradient-based techniques. It was yet another demonstration that, given a rough guess
about the general features of the �ow �eld, the GA can take the problem to convergence.
Unlike GAs, the role of initial guesses for gradient-based techniques is not that paramount;

there, relaxation factors play a much larger role for they govern how much of the gradient-
based information is used to update the solution from one iteration to the next. Relaxation
factors control the speed of the solution convergence but also are the source of divergence
risks. On the other hand, good initial guesses go a long way toward shortening the time it
takes an evolutionary algorithm to converge; but the magnitudes and behaviour of gradients
of �ow properties play a very small role in determining how they progress, as is evident from
the problems considered. This fact will be of great consequences in the next section when
we consider �ows of non-Newtonian �uids and see how gradient-based methods face arduous
di�culties dealing with �uids with low �ow indices.

5. GA FOR A POWER LAW NON-NEWTONIAN FLUID FLOW

5.1. Overview

Fluids that have high molecular weights exhibit behaviours that cannot be explained=predicted
by Newtonian models. By high here, we mean substances with molecular weights of more
than about 1000 amu.¶ The two demonstrative polymers used here, polyethylene and polyvinyl
chloride, have average molecular weights in the ranges 3:1× 106–5:9× 106 and 6× 104–
14× 104, respectively. They are used as examples because of their relative simple structures,
long history, and common use in process industry.
Numerical simulations of non-Newtonian �uids, however, are in the class of the most

di�cult problems in engineering [40, 41]. The dependence of the shear stress on shear rate
and a viscosity that, in turn, has some dependence on shear rate gives any numerical method
a good challenge, no matter how simple this dependence is. Nevertheless, the mechanics of
non-Newtonian �uids are not drastically di�erent from those of their Newtonian counterparts.
The di�erence in the analysis often comes down to the way the viscous stress tensor is
represented. In this paper, we will focus on the power law model, which falls under the
generalized Newtonian category and which is su�cient for describing basic non-Newtonian
phenomena such as shear-thinning and thickening.

5.2. Model problem and governing equations

Channel �ow over a backward facing step is modelled again. The �ow considered is laminar,
isothermal, steady and incompressible. The basic governing equations the �ow obeys are

¶Compare the values of 1000+ amu for non-Newtonian �uids such as candle wax (3000) and Maleic anhydride-
methyl vinyl ether (250 000) with hydrogen (2), water (18), air (28.9), CO2 (44), and mercury (201).
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the Navier–Stokes equations only with a power law model for viscosity used to describe the
viscous stress term in the momentum equations. A famous, simple power-law model is that of
Ostwald and de Waele (commonly called the power law model,) which has two parameters,
the consistency index m, and the �ow index n, and which for a simple unidirectional �ow is
written as

�yx = −m
∣∣∣∣ dudy

∣∣∣∣
n−1 du

dy
(21)

The consistency index m has units Pa sn while the �ow index n is dimensionless. Note that
when m = � and n = 1 the relation for a Newtonian �uid is recovered.
For the general 2-D �ow of a generalized Newtonian �uid, the viscous stress tensor is

given by

�= − �	̇ (22)

where � is the apparent viscosity of the �uid. The power law model for the apparent viscosity
involves the two parameters of the power law model as well as the magnitude of the strain
rate tensor, de�ned as

�=m	̇n−1 (23)

The magnitude 	̇ of the strain rate tensor can be conveniently computed using the second
invariant II (trace) of the tensor as

	̇=
√
2II =
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(24)

Computing the various apparent viscosities � requires appropriate interpolations of the u and
v velocities around the main grid point and then substituting them into the power law formula
below.

�pl=m 	̇n−1 =m

(
2
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+ 2

(
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)2
+
(
2
@v
@y

)2])(n−1)=2
(25)

The apparent viscosity is determined outside the objective function based on the appropriate
instantaneous velocity gradients, and used to update properties at each optimized node. This
causes a few coe�cients of the discretized momentum and pressure equations to change from
the Newtonian case. Details of the coe�cient are given in Reference [20].
Lastly, we note the limits on apparent viscosity for pseudo-plastic �uids:

� −→ 0 as 	̇ −→ ∞ (26)

� −→ ∞ as 	̇ −→ 0 (27)

While the shear-thinning is clearly manifest in pseudo-plastic polymeric liquids, the frictionless
behaviour implied by the �rst limit seems unrealistic. More importantly, the in�nite viscosity
predicted at zero-shear-rate presents numerical di�culties for many algorithm and plagues
the GA solver with the following problem: in�nite viscosity leads to �atter velocity pro�les

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:321–354



348 R. I. BOURISLI AND D. A. KAMINSKI

Table III. Power law parameters of some common polymers.

Polymer m (Pa sn) n (dimensionless)

Polyvinyl chloride 1:7× 104 0.25
Polyethylene 1:3× 104 0.4
Polystyrene 2:8× 104 0.28
Polypropylene 7:5× 103 0.38
Polycarbonate 6.0× 102 0.98

than experimentally observed and reported near the centers of channels where the strain-rates
approach zero. We thus set two limits on the calculated apparent viscosity using the zero-
shear viscosity �0 and in�nite-shear viscosity �∞. These viscosities can often vary by factors
of 100, 1000, or more for some liquids. The reported consistency index m is the zero-shear
viscosity and is used as an upper bound on viscosity. 1=1000 of this value is used as the
in�nite-shear viscosity, thus allowing the apparent viscosity only to thin out as the shear rate
increases. In other words, the bounded formula for the apparent viscosity of a pseudo-plastic
�uid is

�app = min(m;max(�pl; m=1000)) (28)

5.3. Objective and �tness functions

For these non-Newtonian cases, the modi�cations done to the discretized equations are not of
essence; they only involve the details of computing the conductances at the control volume
faces due to the change in the viscosity representation. Therefore, the same objective and
�tness functions of Section 4, i.e. Equations (18) and (20), can be used.

5.4. Numerical results and discussion

A number of �ow indices were tried with the SIMPLER �nite volume-based algorithm to
determine where it had the most trouble converging. The key parameter to investigate is
the �ow index n; for Newtonian �uids n=1, and for pseudo-plastic non-Newtonian �uids n
ranges from ∼ 0:2 (rubber compounds) to 0.9+ (polycarbonate). The smaller n is, the more
shear-thinning the �uid exhibits. Table III lists a few widely used industrial polymers and
their consistency and �ow indices. With the exception of n, problem description is the same
as Section 4.4. Polyethylene and polyvinyl chloride will be speci�cally looked at; they have
�ow indices of 0.4 and 0.25, respectively.
The SIMPLER algorithm was run using these values of n with a number of relaxation

factors ranging from 0.1 to 0.9, using increments of 0:1 at most. A solution was considered
‘converged’ when the maximum pressure correction coe�cient reached 106 which corresponds
to a maximum residual just below 10−2 in the equations of motion. As Figures 16 and 17
show, for n=0:4 SIMPLER converged only for relaxation factors 6 0:22, albeit very slowly,
while for n=0:25 it failed to converge for any constant relaxation factor above 0.1.
It should be noted that a SIMPLER solution can be obtained if one �rst obtains a converged

Newtonian solution for the �ow geometry then successively decreases the �ow index using
very small increments combined with very low relaxation factors, and taking each step to
convergence, until the desired �ow index is reached. The SIMPLER solution obtained by this
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Figure 16. Minimum convergence iterations vs a number of relaxation factors for the SIMPLER
algorithm with a 0.4 �ow index power law parameter. Note: SIMPLER diverged for relaxation

factors greater than 0.2.

Figure 17. Minimum convergence iterations vs a number of relaxation factors for the SIMPLER
algorithm with a 0.25 �ow index power law parameter. Note: SIMPLER never converged for

any relaxation factor above 0.1.

method, however, is very unstable: it diverges immediately upon restarting the solution with
medium-to-large relaxation factors and=or suddenly changing the �ow index by more than
0.05. This of course requires great experience and intuition on the part of the modeller to
carry out the careful manipulations of these parameters.
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Table IV. GA Parameters for the backward facing step with n=0:25.

Nodes Popsize Pa
c Pu

c Pr
m Pu

m Pa
m Pb

m shu�e

1681 40 0.25 0.25 0.1 0.1 0.01 0.01 60% every 10th

Figure 18. Progress of the GA represented by the �tness of the elitist and the maximum residual over
the GA sweeps for a power law �uid with n=0:25.

Because SIMPLER does not converge for any constant relaxation factor for this �ow index,
we are forced to look elsewhere for a good initial guess for the GA. A converged SIMPLER
Newtonian solution was used as an initial guess for this run of the GA. While this guess
is far from ideal (the velocities and pressure are very di�erent and the location of the main
eddy is not consistent with this pseudo-plastic �uid,) it does serve the purpose of giving the
GA a place to start.
A grid of 41× 41 was used for a total of 1681 nodal points to model the �ow with

Reynolds number 56. A complete list of the genetic parameters and options used is given
in Table IV. The evolution took about 32 min, performing 89 GA sweeps for about 1900
corrected generations. The problem was run on the same 2:0 GHz Pentium 4 platform with
512MB of RAM. Figure 18 shows the progress of the evolution represented by the �tness of
the elitist and the magnitude of the maximum residual in the domain over the performed GA
sweeps.
The resulting contours of velocity magnitudes and pressure with velocity vectors superim-

posed on them are shown in Figures 19 and 20, respectively. We see that the GA successfully
arrived at a physical, converged solution for a case that SIMPLER could not do with any
constant relaxation factor. The GA heuristically determined the �ttest chromosome according
to the supplied objective function disregarding the gradients that prevented SIMPLER from
converging.
The GA was run with the option of simultaneously optimizing all three variables at once,

which was found to give the fastest convergence. In simultaneous optimization, at each nodal
point, all three residuals of the discretized equations are calculated and only the largest is
considered for the �tness function. While this method super�cially seems to optimize only
one variable at each node, the selection of the largest residual emphasizes the worst of them
in the �tness value. Since the three equations are heavily coupled, the actual residual might be
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Figure 19. GA velocity magnitude contours with superimposed velocity vectors for �ow over a backward
facing step of a power law �uid with n=0:25.

Figure 20. GA pressure contours with superimposed velocity vectors for �ow over a backward facing
step of a power law �uid with n=0:25.

attributed to any of the variables u, v or p. Moreover, this method cuts down on the overhead
computational time required to do other genetic operators such as the selection operator.
On the other hand, optimizing the unknowns iteratively means that the �tter chromosomes

of the population are judged against the presumed-constant values of other unknowns. When
the other variables are not optimal, a more �t variable might attain a lower �tness than a less
�t one only because it matches the deviation(s) exhibited by the other ‘constant’ variables.
For this reason, the two optimization methods are not quite similar in the GA as in other
solution techniques. A simultaneous GA optimization of solution variables is less simultaneous
and more implicit: it implicitly optimizes all variables treating them as one.
To assess the degree of convergence of the GA, we turn again to SIMPLER. But because

SIMPLER will not converge for the given problem parameters and power law �ow index, we
follow the previously outlined strategy of successively reducing relaxation factors and �ow
indices from a converged Newtonian solution. Treating this solution as the correct solution,
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Figure 21. Breakdown of computation time of a GA run for a power law �uid with n=0:25.

we determine that the GA has converged to within 1:6%. This is comparable to the degree
of convergence of the Newtonian case (cf. Section 4.4). Furthermore, if we take into account
that the non-Newtonian case has double the population size with roughly half the number of
nodes, the di�erence in computational time can be attributed to the poor initial guess for the
non-Newtonian case—which was a half-converged Newtonian solution. We note here that for
this hard to converge problem, SIMPLER will not converge at all without the aforementioned
tricks even when the Newtonian solution is given as the initial guess.
Finally, we examine the breakdown of computational time of the non-Newtonian case,

shown in Figure 21. We notice that the �tness evaluations still take a large chunk of the CPU
time. The calculation of the various equation coe�cients and power law viscosity requires a
large number of loops over nodal points, interpolations of velocities to calculate the viscosity,
and calls for various functions and subroutines from within the �tness routine.

6. CONCLUSIONS

The main proposition of this study was not that GAs can completely replace conventional
CFD methods as stand-alone solution techniques but rather be used as divergence-combating
techniques to be called once divergence or stagnation is detected. The abilities of the GA
as a �uid solver was clearly demonstrated with examples from potential, viscous and non-
Newtonian �uid problems. Their capability of acting as auxiliary CFD solvers that are used
once more traditional methods encounter di�culties was demonstrated with the power law
problem where the �nite volume method failed to converge. The heuristic nature of the
search method permits it to overcome di�culties associated with large gradients in �ow �elds.
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The newly introduced genetic operators greatly enhanced the performance of the GAs. The
applicability of the GAs was expanded to include the previously untested area of computational
�uid dynamics.
The problems considered in this study represent a small class of problems the method can

be applied to. The GA has been applied successfully to many other problems outside the �uid
dynamics arena during the course of this research—such as the problem of the combined
conduction, convection and radiation heat transfer in addition to heat generation. In �uid
dynamics, the problems considered were meant as a vehicle to demonstrate the abilities of
GAs and explore the inner working of the process of arti�cial evolution as they relate to �uid
�ow problems.
Future research e�orts in the area include experimenting with di�erent types of chromosome

coding, di�erent objective functions, such as meshless methods, and other non-Newtonian con-
stitutive equations. More importantly, in order for this evolution program to be truly bene�cial,
users cannot be expected to have the experience to come up with suitable evolution param-
eters. A fuzzy controller can best gauge the performance of the GA and make necessary
changes to the di�erent parameters and probabilities. In conclusion, we believe that these
methods have the potential to be of great utility in CFD applications.
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